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Abstract

The rapid outbreak of the novel severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) in China followed by its spread around the world poses a serious global

concern for public health with almost 90000 people infected and thousands of fatali-

ties. To conquer viral infections, the inhibition of proteases essential for proteolytic

processing of viral polyproteins is a conventional therapeutic strategy. To this date, no

specific drugs or vaccines are available to treat SARS-CoV-2 despite its close relation

to the SARS-CoV-1 virus that caused a similar epidemic in 2003. Thus, there remains

an urgent need for the development of specific antiviral therapeutics to conquer SARS-

CoV-2. In order to find novel inhibitors, we computationally screened a compound

library of over 687 million compounds for binding at the recently solved crystal struc-

ture of the main protease of SARS-CoV-2. A screening of such a vast chemical space for

SARS-CoV-2 protease inhibitors has not been reported before. After shape screening,

two docking protocols were applied followed by the determination of pharmacokineti-

cally relevant molecular descriptors to narrow down the initial hits. Next, molecular
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dynamics simulations were conducted to validate the stability of docked binding modes

and comprehensively quantify ligand binding energies. After evaluation of off-target

binding, we report a list of 11 drug-like compounds with improved binding free energy

to the target protease in contrast to the cocrystallized peptidomimetic lead compound

that suffers from poor pharmacokinetic properties. Furthermore, we identified one

potent binder with comparable properties from the natural compound library.

Introduction

In late 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) was determined as a cause for several cases of respiratory disease in China.

Even though most infected patients only suffer from mild symptoms such as fever and cough

associated with a good prognosis, the disease can progress into fatal cases of pneumonia and

acute respiratory failure, especially in older males with comorbidities.1,2 The virus rapidly

spread from China to over 55 countries worldwide and, up to this date, infected almost 90000

people claiming more than 2800 fatalities3 (as of March 1, 2020), already exceeding the 2003

SARS-CoV-1 epidemic.4 Most probably, the virus originated from a zoonotic transmission

between animals such as bats and humans but progressed to transmit from human to human

through common droplet infection.2,5,6 The World Health Organisation declared the SARS-

CoV-2 outbreak a Public Health Emergency of International Concern7,8 and, based on the

2003 epidemic of SARS-CoV-1, it will lead to the loss of many lives exerting enormous social

impact and economic loss in the magnitude of billions of dollars.9 Currently, there are no

specific therapeutic options available for the infection meaning that clinical treatment of

the disease is mainly symptomatic combined with repurposing of already marketed antiviral

drugs such as ritonavir and antibiotics to treat secondary infections.1 Thus, there remains

an urgent need for the development of specific antiviral therapeutics and vaccines against

SARS-CoV-2.4,10–12

The inhibition of viral proteases necessary for proteolytic processing of polyproteins has
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been a successful strategy in the pharmacological treatment of human immunodeficiency

virus (HIV) and hepatitis C respectively,13,14 proving the potential of protease inhibitors for

the treatment of viral infections. Similarly, the main protease of SARS-CoV-2 is thought to

be essential for viral replication and, therefore, is regarded as promising target for antiviral

pharmacotherapy.10,15 The crystal structure of the SARS-CoV-2 main protease was recently

solved16 enabling the rational design of specific inhibitory compounds. The close relationship

of SARS-CoV-2 to SARS-CoV-1 is reflected by the high sequence identity of 96.1% among

their proteases.10,17 In this regard, it was suggested that drugs developed against SARS-

CoV-1 might be effective to treat SARS-CoV-2.12 However, these compounds remained in the

preclinical or early clinical stage not leading to an approved medicine18 and their effectiveness

for the novel virus might suffer due differences in single amino acids.19 Accordingly, the

development of specific inhibitors for SARS-CoV-2 main protease remains an urgent necessity

in the scientific community10–12 which is reflected by the multiple projects focusing on this

protein. For example, three studies investigating the repurposing of marketed drugs proposed

several candidates for SARS-CoV-2 treatment.10,15,20 In another recent study, a deep learning

approach combined with a homology model of the protease was applied to screen a library

of approximately one million compounds including already approved drugs, tripeptides, and

natural products.12 However, the disadvantage of applying therapeutics originally designed

for a different target is the risk of undesired pharmacological effects and adverse reactions.21

In this study, we screened a large library of over 687 million compounds with the ambition

to find novel inhibitors for the SARS-CoV-2 main protease. In a first step, we performed a

shape-based screening with known binders for the SARS-CoV-1 main protease and relevant

substructures as template molecules. After the initial shape screening round, two different

docking protocols were applied followed by the assessment of molecular descriptors relevant

for pharmacokinetics to narrow down the number of binders. Clustering based on molecular

fingerprints was applied to ensure structural diversity of the compounds that were, in the next

step, subjected to molecular dynamics (MD) simulations. Based on the obtained trajectories,
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the binding free energy of the ligands was quantified using Molecular Mechanics/Generalized

Born Surface Area (MM/GBSA) post-processing. In the last step, we assessed potential toxic

effects of the compounds due to the interaction with 16 known drug off-targets to make a final

selection of 11 compounds. Such a comprehensive exploration of chemical space intending to

discover SARS-CoV-2 protease inhibitors was, to the best of our knowledge, not previously

reported.

Results and discussion

Comparison of proteases between SARS-CoV-2 and SARS-CoV-1

The SARS-CoV-2 protease consists of three domains (Figure 1A)18 and processes polypro-

teins using a catalytic dyad consisting of histidine and cysteine as catalytic residues. Its

active site is located between domains I and II. As SARS-CoV-2 is closely related to SARS-

CoV-1, their proteases display a high degree of sequence similarity (96.1%; Figure 1D).10,17

In the vicinity of the active site, only a single amino acid (Ser46) is different among the two

proteases. However, the surface topology of the active site among the two proteins presents

distinct differences, especially in the vicinity of the loop centered around Asn142 (Figures

1B and 1C). Additionally, the size and depth of the S1’ pocket shows notable differences

and, at the center of the S1, S1’, and S3, the SARS-CoV-2 protease presents a more distinct

subcavity as opposed to the SARS-CoV-1 enzyme. Consequently, inhibitors of the SARS

protease might present altered binding affinities for the SARS-CoV-2 protease. Similarities

to other viral proteases such as the one of HIV or Middle-East Respiratory Syndrome coro-

navirus (MERS-CoV) are comparatively low.22 Although the main protease presumably is

the most promising therapeutic target to attenuate viral replication, the inhibition of other

functional proteins such as the papain-like protease or the interaction between the viral spike

protein and its entry receptor to human cells were considered as well.8,22
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Figure 1: Structural overview and sequence alignment. (A) The three domains (domain I in
blue, domain II in grey, domain III in red) of the main protease of SARS-CoV-2 are shown.
Amino acid changes between SARS-CoV-1 and SARS-CoV-2 are indicated by asterisks. The
cocrystallized ligand (PDB ID 6LU7) is presented in organe. (B) Surface topology of the
binding pocket of the SARS-CoV-2 main protease (PDB ID 6LU7). The location of Ser46
is indicated by an asterisk. (C) Surface topology of the binding pocket of the SARS-CoV-1
main protease (PDB ID 2A5I). (D) Sequence alignment of the proteases of SARS-CoV-1 and
SARS-CoV-2. Mismatches are marked in blue.
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Virtual screening procedures

Virtual Screening is a widely used technique at the early stage of drug discovery that allows

to identify potentially bioactive compounds at a high throughput.23 Due to its speed and

cost-effectiveness, using it to identify drug candidates against the globally expanding SARS-

CoV-2 offers a promising approach, especially when time is of the essence. The inhibition

of proteases as treatment against viral infections has been proven for HIV, rendering the

SARS-CoV-2 main protease an attractive drug target in particular since its crystal structure

has been recently solved. In our virtual screening workflow (Figure 2), we started with 687

million compounds from the three-dimensional ZINC database in a shape-based screening

routine. Such a coarse GPU-accelerated protocol allows for the rapid screening of large

databases based on known binders as template. Previous virtual screening efforts were

limited to significantly smaller compound libraries.10,12,15,17,20

Figure 2: Virtual screening workflow and binding poses of top two ligands. (A) Virtual
screening workflow. (B) Binding pose of CP-1. (C) Binding pose of CP-2.

We refined the high number of initial hits (395132 compounds) to 6599 compounds by

selecting the best hits regarding shape overlap. The remaining compounds were docked
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into the active site of five representative structures of the protease using the smina dock-

ing protocol resulting in 2286 hits with a score below a threshold of -7.0 kcal/mol with

the majority of compounds scored below -5.0 kcal/mol. While most previous studies re-

garding SARS-CoV-2 were limited to a homology model of the protease,10,12,15,17 we could

rely on a recently solved crystal structure for our docking procedures. The pharmacokinetic

descriptors of these compounds are shown in Figure 3. Due to the origin of the selected

compounds in the ZINC database, drug-likeness regarding molecular weight (MW) was to

be expected. However, several structures violate commonly accepted criteria distribution

coefficient logD and polar surface area (PSA), allowing for their delimitation. Due to the

catalytic function of the target enzyme, peptides and peptidomimetics are widely applied

in targeting proteases.18 Nonetheless, disadvantages of peptides or peptidomimetics include

limited oral bioavailability due to their large MW, PSA, and high number of rotatable bonds

as well as poor metabolic stability and higher production cost.24 Therefore, the development

of small-molecules with balanced and favorable pharmacokinetic properties facilitating oral

absorption offers a promising alternative.

Figure 3: Pharmacokinetically relevant descriptors of the compounds that were subjected to
the Glide SP docking protocol.

In the attempt to attain a consensus in binding affinity, we used the Glide SP protocol
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to evaluate the interaction of the remaining 2286 compounds with the protein active site.

Except for two compounds, a valid binding pose was detected in all cases with most com-

pounds scores below -5.0 kcal/mol. The set of compounds with a Glide score below -6.5

kcal/mol presented a high number of congeneric ligands including many structurally similar

natural compounds. Therefore, in order to stimulate the structural diversity of the com-

pound set, we computed extended connectivity fingerprints and compared them according

to the Tanimoto coefficient for subsequent clustering. For each cluster, the two compounds

with the best Glide score were selected and evaluated regarding their pharmacokinetic de-

scriptors. We did not allow the violation of either the Lipinski and Veber criteria resulting in

55 compounds left over for MD simulation. Based on the resulting time-evolved ensemble of

ligand-protein complexes, the binding free energies of the ligands were estimated using the

MM/GBSA protocol. This protocol was recently applied to predict the interaction energy

between nelfinavir and the SARS-CoV-2 main protease.10 Compounds with a binding free

energy improvement in contrast to the cocrystallized ligand were considered regarding their

potential toxicity. The VirtualToxLab evaluates the toxic potential of a small molecule on the

basis of individual binding affinities to 16 validated off-targets including nuclear receptors,

metabolic enzymes, and the human Ether-à-go-go-Related Gene channel (hERG). Such an

assessment at an early stage of drug discovery might mitigate the attrition rate of drugs due

to toxicity and safety which represent a large share of preclinical and clinical failures of drug

development programs.25 The remaining 17 compounds included several compounds with a

toxic potential above 0.5 that could be discarded from the final set. In the ligands subjected

to MD simulation, we further selected the natural compound with the lowest binding free

energy which was (-)-taxifolin.

Final compound selection

We identified 11 compounds with a lower free energy of binding combined with a higher

theoretical potential of absorption after oral administration compared to the cocrystallized
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Figure 4: Structures of our final selection of compounds and the highest scored natural
compound.

ligand N3 (Table 1 and Figure 4). The reported set of ligands should be regarded as early

lead compounds since no experimentally supported optimization was conducted. While some

compounds only offered a minor decrease regarding binding energy, CP-1 to CP-4 presented

a substantial improvement in comparison to the cocrystallized ligand up to nearly 30%. A

study that primarily applied artificial intelligence in the form of a neural network to discov-

ery SARS-CoV-2 inhibitors additionally tested their compound using AutoDock Vina. Their

compounds present docking scores ranging from -7.3 to -8.5 kcal/mol,12 which is compara-

ble to our selection of ligands (Table S1, Supporting Information). Our proposed antivirals

interacted with the target with at least one hydrogen bond with an average of over two

(Figure 2A and 2B, Table S2). Further, they showed excellent pharmacokinetic descriptors

with logD values ranging from 0 to 4.6, MW below 487 g/mol, PSA below 105.5 Å2 and hy-

drogen bond acceptors as well as donors in the range described by Lipinski.26 Consequently,

the compounds offer an advantage over commonly described peptidomimetic inhibitors.18 In

contrast to other proposed inhibitors for SARS-CoV-2,18 the availability of compounds are
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marked as either for sale, in-stock or on-demand in the ZINC database (Table S1). Regard-

ing potential toxicity through off-target binding, the compounds regularly presented toxic

potentials close to 0.5. The top two compounds CP-1 and CP-2 presented comparatively low

values and therefore represent excellent candidates for further investigation in vitro. Sim-

ilarly, the natural compound (-)-taxifolin only exhibited a low potential for binding to the

16 off-targets. Natural compounds such as flavonoids were previously considered to inhibit

the main protease of SARS-CoV-1 and their effectiveness was demonstrated by fluorescence

resonance energy transfer (FRET).18,27 Further, in vivo experiments with (-)-taxifolin evi-

denced activity against other viruses such as coxsackievirus B4.28 The sibirian larch (Larix

sibirica) is known to produce (-)-taxofolin offering a natural resource for its extraction. Fur-

thermore, food preparations containing (-)-taxifolin are readily available from pharmacies

and other companies allowing direct and fast access to the potential antiviral. Remarkably,

(-)-taxofolin underwent seven hydrogen bonds which represents the highest count in our se-

lection of compounds. Since hydrogen bonds are a key determinant for drug specificity,29

(-)-taxofolin might offer a naturally occuring alternative to the proposed inhibitors CP-1 to

CP-11.

Conclusions

The outbreak of SARS-CoV-2 around the globe and the resulting consequences are an impres-

sive reminder of the menace of zoonotic diseases for public health and the economy of many

countries.30 The lack of specific therapeutics against the novel virus urges for the discovery

of new drug compounds for which computational methods offer a fast and cost-efficient ap-

proach. Here, we employed a virtual screening workflow consisting of seven individual steps

to ultimately determine 11 potential binders. For all reported compounds, we estimated low

to moderate to toxicity caused by off-target binding, improved drug-likeness, as well as as en-

hanced binding to the therapeutic target compared to the cocrystallized ligand. In addition,
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Table 1: Final selection of compounds compared to the cocrystallized ligand and the highest
scored natural compound.

Compound ∆Ga (kcal/mol) Scoreb (kcal/mol) MWc (g/mol) logD logS PSAd (Å) ToxPote

CP-1 -70.6 ± 3.9 -14.5 328.4 0 -2.3 73.0 0.352
CP-2 -69.9 ± 4.0 -14.6 299.4 0.6 -2.5 82.9 0.245
CP-3 -66.7 ± 4.7 -15.8 383.4 3.8 -5.4 63.7 0.492
CP-4 -65.3 ± 3.6 -15.2 391.4 3.5 -6.0 105.5 0.494
CP-5 -60.3 ± 4.8 -15.5 487.0 3.5 -5.9 73.0 0.291
CP-6 -58.2 ± 6.0 -15.6 399.5 2.3 -5.2 78.8 0.257
CP-7 -56.3 ± 6.2 -14.6 332.8 3.5 -4.9 32.3 0.482
CP-8 -56.3 ± 5.7 -15.3 366.5 3.4 -5.2 70.0 0.154
CP-9 -56.1 ± 4.6 -14.7 337.4 4.2 -5.1 64.0 0.418
CP-10 -56.0 ± 4.5 -14.9 340.5 4.6 -5.2 70.7 0.499
CP-11 -55.2 ± 3.7 -14.9 338.3 2.9 -4.9 72.2 0.482
N3 -55.0 ± 6.9 -16.0 587.8 -3.1 -0.6 205.3 n/af

(-)-taxifolin -53.3 ± 5.1 -16.8 304.3 1.7 -2.1 127.5 0.289
a Ligand free binding energy predicted by MM/GBSA approach (excluding entropic

contributions) with standard deviation; b Consensus docking score based on sum of highest
smina and Glide scores; c Molecular weight; d Polar surface area; e Toxic potential

predicted by VirtualToxLab. f Value not available.

we report a natural compound occurring in the sibirian larch that offers a promising alter-

native with commercially available plant extracts and derived supplements. To this date,

our study marks the most extensive computational screening for the discovery of SARS-

CoV-2 main protease inhibitors. Experimental validation and subsequent optimization of

our proposed early lead compounds might offer a valuable strategy to conquer SARS-CoV-2.

Materials and Methods

System preparation and ensemble generation

The protein structure of the SARS-CoV-2 main protease was retrieved from the Protein Data

Bank (PDB ID 6LU7) and processed using the Protein Preparation Wizard that comes with

the Maestro Small-Molecule Drug Discovery Suite (v2019-4)31 by adding hydrogen atoms,

predicting protonation states at physiological pH (pH = 7.4), and reorienting the hydrogen

bonding network. Sequence alignment to the protease of SARS-CoV-1 was performed using
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the Ugene suite of tools combined to the ClustalW algorithm.32,33 Next, the system was

subjected to a restrained minimization with an root-mean square deviation (RMSD) conver-

gence threshold of 0.3 Å using the OPLS 2005 force field. To obtain an ensemble of structures

for following procedures, an MD simulation with a duration of 20 ns was performed using

the Desmond (v2019-1) simulation engine.34 To solvate the orthorhombic periodic boundary

systems extending 10 Å from the complex in every dimension, we selected the TIP3P water

model. First, the default relaxation protocol of Desmond was executed, followed by the pro-

duction phase at 310 K in an NPT ensemble. For all production simulations in this study,

we applied the Martyna–Tobias–Klein barostat, with a relaxation time of 2.0 ps at 300 K

and the Nose–Hoover thermostat, with a relaxation time of 1.0 ps. We used the u-series

algorithm to treat long-range interactions with a cutoff of 9 Å for short-range interactions35

and the M-SHAKE algorithm to constrain bonds to hydrogen atoms. The timestep of the

RESPA integrator was left at 2.0 fs and snapshots with atomic coordinates were saved at

an interval of 10 ps. Using the resulting simulation trajectory, we used the trj cluster.py

script provided in Maestro, which relies on an affinity propagation algorithm, to determine

five representative structures of the protease.

Pharmacokinetic descriptors

Chemical descriptors according to Lipinski and Veber,26 as well as the aqueous solubility

(logS), known to influence the pharmacokinetics of drug candidates, were determined using

the cxcalc module of the Marvin (v20.4.0) suite.36 Instead of the commonly used logP value,

we decided on using the more representative logD value to predict the partitioning of the

ligands with respect to ionization states.37 Properties dependent on the ionization of the

compound were computed at a physiological pH value of 7.4. The descriptors were computed

for all ligands that were supplied to the smina docking protocol.
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Docking and shape screening

In a first step, the GPU-accelerated shape screening protocol of Maestro was employed

to rapidly compare the drug-like portion of the three-dimensional ZINC38 library. Addi-

tionally, due to the comparatively large size of the cocrystallized peptidomimetic inhibitor,

compounds with a molecular weight above 500 g/mol were considered. As templates, a

substructure of the cocrystallized ligand of SARS-CoV-2 protease (compound 4), a cocrys-

tallized ligand (compound 9) and three substructures of the equivalent SARS-CoV-1 protease

inhibitors (compounds 1, 3, and 7), as well as four known SARS-CoV-1 inhibitors with bind-

ing affinity below 10 µM (compounds 2, 5, 6, and 8) derived from the PubChem database39

were selected (cf. Figure 2). The experimentally derived inhibitors were selected based

on their structural diversity assessed with molecular extended connectivity fingerprints fol-

lowed by a Tanimoto comparison and subsequent clustering in the Discovery Informatics

panel within Maestro. For the shape comparison a threshold of 45% shape overlap was se-

lected. The best 5000 hits regarding shape similarity, as well as the top 500 compounds of

each input template were selected for further steps.

Figure 5: Input structures for shape screening derived from crystal structures and the Pub-
Chem database.

Next, we used the smina40 docking protocol, a fork of AutoDock Vina (v1.1.2),41 on the

selected compounds to quantify their interaction with each of the representatives structures
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from the generated ensemble. The ligand PDBQT files for docking were generated using

the prepare ligand4.py script that comes with AutoDockTools (v1.5.4).42 Docking was per-

formed at an exhaustiveness of 16, the search space was defined using the automatic method

with smina, and a random seed of 42 was selected. Hits with a binding free energy below

-7.0 kcal/mol were then subjected to the default Glide standard precision (SP) docking pro-

tocol in Maestro.43 Likewise, the interaction with all five ensemble structures was quantified.

Compounds with a free binding energy below -6.5 kcal/mol were then subjected to clustering

based on the Tanimoto comparison of per-atom molecular fingerprints. For each of the 138

resulting clusters, the best two compounds (one compound in the case of a single structure

per cluster) according to the Glide score were selected for further assessment. The commer-

cial availability of the compounds was retrieved from the ZINC website. The final set of

compounds that was subjected to MD simulations was selected according to the following

criteria: (i.) availability not orphaned, (ii.) no violations of Lipinski and Veber criteria,

(ii.) average ensemble score below -6.5 kcal/mol in smina docking, (iv.) average ensemble

score below -6.0 kcal/mol in Glide SP docking, and (v.) sum of best docking scores in either

protocol below -14.5 kcal/mol. The same docking and ranking procedure was performed

with the cocrystallized ligand N3.

MD simulations and post-processing

In order to get insight into the stability and interaction energies of the previously filtered

set of ligands, we conducted MD simulations of each compound. As input for the simula-

tions, we chose the ligand-protein complex with the highest Glide SP docking score among

the ensemble structures. The duration of the simulations was selected to be 25 ns with

atomic coordinates recorded at an interval of 25 ps, while the remaining settings were left

as described above.

The stability of the binding modes was quantified using RMSD in the Simulation Inter-

action Diagram panel in Maestro. The binding free energy was quantified using the ther-
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mal mmgbsa.py routine that comes with Maestro for the last 100 frames of the trajectory

with a step size of two. This routine is based on MM/GBSA calculations that essentially

compare the apo and holo states of the enzyme with various enthalpic terms. The resulting

binding free energies were averaged for the selected frames of the trajectories.

Toxicity assessment and selection of final set of compounds

Potential toxic effects of the compounds that were subjected to MD simulations was assessed

using the VirtualToxLab21,44 that evaluates the binding affinity of a probe compound to 16

known off-targets. The target structures include androgen receptor (AR), aryl hydrocarbon

receptor (AhR), cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2D6, CYP3A4, estrogen

receptor α (ERα), ERβ, glucocorticoid receptor (GR), mineralocorticoid receptor (MR), liver

X receptor (LXR), hERG channel, peroxisime proliferator-activated receptor γ (PPARγ),

progesterone receptor (PR), thyroid receptor α (TRα), and TRβ. The routine quantifies the

binding affinities to each target and, based on them, estimates a numerical value of toxicity

termed toxic potential ranging from 0.0 to 1.0.

The set of ligands subjected to MD simulations was refined based on their toxic potential

and average free binding energy to derive the final set of compounds. Compounds with

an MM/GBSA binding energy below -55.0 kcal/mol and a toxic potential below 0.5 were

considered.
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